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We develop a “chain-boson model” master equation, within the Born-Markov approximation, for a few
superconducting quantum interference devices �SQUIDs� coupled into a chain and exchanging their angular
momenta with a low-temperature phonon bath. Our master equation has four generators; we concentrate on the
damping and diffusion and use them to study the relaxation and decoherence of a Heisenberg SQUID chain
whose spectrum exhibits critical-point energy-level crossings, entangled states, and pairs of resonant transi-
tions. We note that at an energy-level crossing, the relevant bath wavelengths are so long that even well-spaced
large SQUIDs can partially exhibit collective coupling to the bath, dramatically reducing certain relaxation and
decoherence rates. Also, transitions into entangled states can occur even in the case of an independent coupling
of each SQUID to the bath. Finally, the pairs of resonant transitions can cause decaying oscillations to emerge
in a lower-energy subspace.
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I. INTRODUCTION

A. SQUIDs and SQUID chains

A superconducting quantum interference device �SQUID�
can be made from a small strip of aluminum bent into a ring,
joined at the ends, and cooled to a millikelvin temperature.
Aluminum is a superconductor and an aluminum oxide layer,
where the ends meet, forms a “Josephson junction” potential
barrier. Precise tuning of an externally imposed magnetic
flux can cause oscillations of current1,2 between clockwise
“�↑ �” and counterclockwise “�↓ �” states via an evolving
phase interference, ei�E1−E0�t/�, between the ground state, �0�
���↑ �+ �↓ �� /�2, and first excited state, �1����↑ �− �↓ �� /�2,
which span the low-energy dynamics of the device and form
a logical basis for a “qubit” of quantum information, c0�0�
+c1�1�.

Many SQUIDs can be coupled together into a chain. The
aluminum rings are not topologically linked but their prox-
imity allows capacitive and inductive interactions between
nearest-neighbor SQUIDs.3,4 We are principally interested in
using the chain to encode5–7 and protect or correct8–11 quan-
tum information. “Logical gate” operations on a chain of
SQUIDs can create12 useful nonclassical correlations quanti-
fied by their “entanglement of formation.”13 Chains can
propagate excitations, qubits,14–17 and even entangled sin-
glets, ��↑↓�− �↓↑�� /�2.18–20 They could also provide long-
sought experimental realizations of spin chains which in turn
illustrate the correlations and phase transitions of many-body
physics. Cooling a chain to its zero-temperature ground state
can prepare useful entanglement.21,22 Ground-state entangle-
ment can vanish abruptly, for example, as spin-spin cou-
plings are adjusted across a critical point.23–25 In that case, it
is the intermediate energy states that can possess entangle-
ment; their quantum correlations can be evident, at a warmer
but not too high temperature, when mixed sufficiently into
the equilibrium state.26,27

B. Decoherence and relaxation

Here we consider some effects of exposing a SQUID
chain to a low-temperature bath of phonons. We suppose the
SQUIDs are lithographically etched and deposited into a
solid crystal �e.g., of silicon� which, for simplicity, we as-
sume surrounds the chain. In a SQUID’s oscillation between
current states, the conservation of total angular momentum
requires torsional oscillations of the solid and thus the emis-
sion and absorption of phonons.28 Decoherence of supercon-
ducting qubits is also caused by two-level defects in the Jo-
sephson junction barrier material,29 which could in principle
be purified, whereas here we consider only the minimal un-
avoidable coupling required by symmetry.

Usually, when a quantum system is opened up to its finite-
temperature environment, its energies and eigenstates are
perturbed and the new energies and stationary states are
viewed as renormalized quantities. Then it equilibrates, by
decoherence and relaxation, to a stationary thermal mixture
of these eigenstates. In the relaxation process, the population
�i.e., probability� of each eigenstate is adjusted until a ther-
mal mixture is obtained. Decoherence is the decay of the
oscillations �e.g., of the current�. Some decoherence goes
along with the relaxation—adjusting the probabilities of the
eigenstates undermines the support for any phase interfer-
ence between them—but it can also be caused by pure
dephasing, in which the phase’s probability distribution
spreads, reducing the average phase interference, or “coher-
ence,” without adjusting the populations. As described in Ap-
pendix A, the populations and coherences are, respectively,
the diagonal and off-diagonal matrix elements, in the energy
eigenbasis, of the chain’s density operator ��t�. The absolute
value of a coherence is just the �decaying� envelope of the
oscillations.

We are interested in large SQUIDs of radius R=10 �m
with a 3 �A current oscillating at 1.0�0.5 GHz. For a
single SQUID the decoherence model gives decoherence
times of a few microseconds28 which are not inconsistent
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with those of recent experiments.1,30 On the other hand we
will also simulate small SQUIDs, with R=10 nm and I
=0.1 �A, to demonstrate the concept of a collective cou-
pling to the environment. The concept of a collective cou-
pling is relevant to the critical-point open system dynamics
of the large SQUIDs.

C. Chain-boson model

The spin-boson model31 has been widely applied toward a
better understanding of the environment’s effect on a single
qubit’s coherence. In the spin-boson model, a two-level sys-
tem is coupled to an environment of oscillators which model
a heat bath, such as is often used in studies of quantum
Brownian motion.32–34 Because of the coupling, the system
becomes entangled with the bath. When averaged over envi-
ronmental outcomes, the system typically loses coherence
and thermalizes. Chains of harmonic oscillators interacting
with a finite temperature bath have been considered in Refs.
35–37. In light of qubit encoding schemes and the desire to
process and protect quantum information, it is necessary to
study the decoherence of multiple qubits. In the chain-boson
model one embeds a chain of qubits in a bosonic bath so that
the qubits experience a location-dependent interaction with
the bath variables.

For a system comprising a register of qubits, two types of
system-bath coupling have already been extensively consid-
ered. The simplest is a collective coupling, in which each
qubit couples to the same environmental variable as the rest.
This is appropriate to scenarios where the qubits are spaced
closer together than the relevant wavelengths of the bath, i.e.,
those corresponding to the qubits’ transition frequencies. The
symmetries of the collective coupling can lead, with certain
system Hamiltonians, to decoherence free subspaces10,38,11

and Dicke super-radiance and subradiance and superdecoher-
ence and subdecoherence.39,40

The other commonly used type of system-bath coupling is
the independent coupling model, in which each qubit couples
to its own bath, separated from the baths used for the other
qubits. This is an appropriate model for qubits spaced farther
apart than the relevant wavelengths of the bath. In the con-
text of solid-state qubits, a significant source of noise is the
voltage leads that control the qubits. With one lead per qubit,
the independent bath model is a natural assumption. The in-
dependent coupling model has been used to study the deco-
herence during two-qubit logic gates41,42 as well as the en-
tanglement rate for coupled qubits.22,43,44

When there is one voltage lead controlling multiple qu-
bits, one typically uses the collective coupling model, as
each qubit is experiencing the same electronic noise. A likely
scenario for a pair of qubits is an independent lead for each
qubit as well as one common lead. The disentanglement and
decohering of the two qubits in two separate and one com-
mon cavities have been considered.45–50 Several works com-
pare the collective and independent bath scenarios for
coupled qubits.51–54 Fine tuning the interqubit coupling to
protect against collective dissipation has also been
studied.55,56 In comparison, the optimum qubit-qubit cou-
pling was examined for the case of independent
dissipation.57,58

Most studies fall into these two categories, whether the
qubits are coupled together or not. However, for uncoupled
qubits there has been careful consideration of the intermedi-
ate scenario, in which the qubits are neither far apart nor
close together.59–61 The relaxation and decoherence rates de-
pend on k� ·r� jk=�� jk, where k� are the bath wave vectors that
interact with the register of qubits at its transition frequency
�, and � jk is the phonon transit time between qubits j and k
separated by r� jk. These results make an elegant transition
between the two limiting cases of qubits close together and
far apart. In the intermediate scenario the bath can induce
entanglement between uncoupled qubits,62 as can also hap-
pen with a collective coupling to the bath.63 Uncoupled
SQUIDs can also be entangled when the bath is specialized
to a single mode cavity.64

D. Role of the critical point

In our chain of SQUIDS coupling to phonons, an essential
point is that the interqubit couplings can play a crucial role in
determining which are the relevant bath wave vectors and
thus whether the qubits couple collectively or independently
to the bath. In our model, there is a critical-point energy-
level crossing at which some transition frequencies are so
slow that k� ·r� jk=�� jk�1 even though the qubits may be far
apart with respect to the uncoupled qubits’ transition fre-
quencies. At the critical point the chain can thus obtain some
or all of the benefits of a collective coupling to the bath.
Some interesting studies include the intermediate regime for
coupled qubits65,66 and detail the subradiant behavior of
dipole-coupled qubits for small k� ·r� jk,

67 but the role of the
interqubit coupling in determining the relevant bath wave
vectors and their relation to the interqubit distance is not
emphasized.

E. Overview

Working from the total Hamiltonian H=HS+HB+V which
govern the SQUIDS, the bath, and their coupling, we apply
master-equation techniques from the quantum Brownian mo-
tion model,32–34 in the Born-Markov approximation, to a
chain of SQUIDs interacting with a phonon heat bath via
location-dependent couplings. The resulting generators of the
open system dynamics are associated with four types of co-
efficients: the renormalization, anomalous diffusion, damp-
ing, and diffusion. We use the damping and diffusion to de-
velop a matrix element equation for the populations and
coherences. It is similar to a Bloch-Redfield68 equation but in
the interaction picture. It gives the relaxation and decoher-
ence rates, as well as the possibility for coherent oscillations
to move69 from one subspace, where they are decaying, into
a lower-energy subspace with a longer decoherence time. A
complete network of selection-ruled transitions leads to ther-
malization. This is usually the case for large well-spaced
SQUIDs. For small closely spaced SQUIDs, the network is
broken by the degeneracies of their collective coupling to the
bath; decoherence and transition rates can scale with the
number of SQUIDs or vanish; some subspaces are protected.
Finally, at the critical point even the large well-spaced
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SQUIDs can acquire some of these collective Dicke super-
radiant and subradiant and superdecoherent and subdecoher-
ent behaviors.

II. CHAIN, BATH, AND THEIR COUPLING

A. Heisenberg SQUID chain

For its mathematical simplicity and relevance to quantum
information processing, we consider the isotropic Heisenberg
coupling between nearest-neighbor SQUIDs. In principle this
can be engineered with a precise balance of inductive and
capacitive couplings between nearest-neighbor SQUIDs.
However, several of our methods are applicable to other
types of coupling. The “antiferromagnetic” �J	0� Heisen-
berg chain of N SQUIDs evolves by its Hamiltonian,

HS = �
j=1

N

�J
� j · 
� j+1 − B
 j
x� , �1�

assuming periodic boundary conditions 
� N+1�
� 1. Here, 
� j
are the Pauli matrices for the jth SQUID, with �↑ � and �↓ � as
the eigenstates of 
z, and B is an energy splitting �not an
imposed magnetic field� appropriate to the natural precession
of our pseudospin qubits: coherent quantum oscillations be-
tween �↑ � and �↓ �.

The Heisenberg and magnetic sums commute and their
respective quantum numbers l and m determine the energy
spectrum �lJ−mB	 �up to some degeneracies not split by J
and B�. Regardless of N, each eigenstate is a linear combi-
nation of states with the same number of �1� vs �0� qubits
�m�N0−N1� and is typically entangled with the exception of
the extremal m states �11¯� and �00¯�. Increasing B rela-
tive to fixed J causes energy-level crossings. At a critical
point, Bc, the ground state changes from entangled to unen-
tangled.

The two-SQUID chain’s energies are shown in Fig. 1 as a
function of the single-SQUID energy splitting B. Figure 2

plots the energies for a three-SQUID chain. Their respective
eigenstates are as follows:

Three-SQUID chain

��1� � �000�
Two-SQUID chain ��2� � �001� − �100�
��1� � �00� ��3� � �001� + �100� − 2�010�
��2� � �01� − �10� ��4� � �001� + �100� + �010�
��3� � �01� + �10� ��5� � �011� − �110�
��4� � �11� ��6� � �011� + �110� − 2�101�

��7� � �011� + �110� + �101�
��8� � �111� .

B. Harmonic phonon bath

The harmonic crystal Hamiltonian is composed of phonon
modes labeled by wave vector k� and polarization index s.
Each phonon contributes an energy ��s�k��,

HB = �
k�,s

��s�k��ak�s
† ak�s. �2�

Here ak�s
† and ak�s are the phonon creation and annihilation

operators. For frequencies below a “Debye” or cutoff fre-
quency �, we assume linear dispersions, �1,2�k��=c��k�� and
�3�k��=c
�k��, for transverse ��� and longitudinal �
� polariza-

tions ês�k��= �k̂�1 , k̂�2 , k̂
	. We will also make use of the mo-
mentum density at site r�,


� �r�� = − i�
k�s

���s�k���
ak�se

ik�·r� − ak�s
† e−ik�·r�

�2V
ês�k�� , �3�

with V and � as the volume and mass density of the crystal.
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FIG. 1. Relaxing through entangled states. A Heisenberg two-
SQUID chain above the critical point Bc cooling from �11� to �00�.
In the process, the states �01�� �10� are occupied, resulting in a
surge of the entanglement of formation, even though the ground
state is separable and the large SQUIDs are dissipating indepen-
dently. �8J /h=1.0 GHz, 2B /h=1.5 GHz, kBT /h=0.3 GHz, R
=10 �m, I=3 �A, �=5 g/cm3, and c�=5 km/s�.
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FIG. 2. Decaying oscillations emerging in a lower-energy sub-
space. Three large SQUIDs dissipating independently. ��4�+ ��7�
cooling through a mixture including ��1�+ ��4�. The transitions

��4�↔ ��1� and ��7�↔ ��4� are resonant. �̃47, which decays �e−�̄47t,

is absorbed into �̃14 which decays more slowly �e−�̄14t. It might be
easier to start with �↑↑↑�, close to the equal superposition of ��4�
= �001�+ �100�+ �010� and ��7�= �011�+ �110�+ �100�, to prepare the
coherence �̃47 which flows into �̃14 �6J /h=1.0 GHz, 2B /h
=1.5 GHz, kBT /h=0.3 GHz, R=10 �m, and I=3 �A�.
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C. Chain-bath coupling

The coupling between the SQUIDs and the crystal arises
from the fact that each SQUID’s current I
 j

z is formed from
the electronic band states in the reference frame comoving
with the lattice sites during the torsional oscillations of the
crystal.28 In the laboratory frame the electron velocity v�e

must include the speed u�̇ =
� /� of the lattice sites: v�e

= j� / �ene�+u�̇ . Here j� is the current density and e and ne are
the electron charge and number density of the electrons.
Their kinetic-energy density ne

1
2me�v�e�2 thus acquires a cross

term and the total Hamiltonian must include an additional

V = �me/e�� d3rj� · u�̇ . �4�

For sufficiently small SQUIDs, the angular velocity of the

lattice rotation �� � 1
2 � �u�̇ is constant across the extent of

the jth SQUID and we can use u�̇ =r���� to write V=

−� j�L� j ·�� j with L� j = �me /e�
d3rj�r� j � j�j� as the angular mo-
mentum of the jth SQUID.28 Our small-SQUID theory could
thus be applied to nanomagnets with intrinsic angular mo-

menta L� j ⇒S� j and with the local rotation �� j of the crystal
field’s anisotropic gyromagnetic tensor acting like an addi-

tonal magnetic field B� .40 In this paper, we consider both large
and small SQUIDs without emphasizing small SQUIDs or
nanomagnets.

In Appendix B we first derive, following Ref. 28, the
coupling Vj of an individual SQUID to the crystal and
then—because the current density j� is the sum of the indi-
vidual densities j�j—sum their contributions at SQUID loca-
tions x� j �spaced a distance d apart along the x axis� to obtain

V = ��
j

X j� j , �5�

akin to a quantum Brownian oscillator’s bilinear coupling to
an oscillator bath, �x� �only here we are summing over sev-
eral contact points between the chain and the bath�. The cou-
pling constant ��2
I�me /e��R�c� /2�V fixes the strength

of the interaction between chain operators X j �
 j
z and bath

operators,

� j � �
k�

��k��RJ1�kxR��ak�1eik�·x� j + ak�1
† e−ik�·x� j� , �6�

for which we have defined the first transverse polarization
ê1�k�� to lie in the plane of the SQUID ring and J1�kxR�
=J1��k��R sin �� is the first-order Bessel function �and � is the
polar angle between the ẑ axis of the ring and the wave
vector k��.

The selection rules, �l�m��X j�lm���m�,m�2, reflect the fact
that the “interaction operator” X j simply flips the jth �0� or
�1�, giving a nonzero probability only to obtain an eigenstate
with one more �1� or �0�. The allowed bath-driven transition
frequencies are �= ��l− l��J�2B� /� �any transitions driven
between degenerate states are thus between distinct l and l�
at a crossing of energy levels�.

The two-SQUID chain’s interaction operators are, in its
energy eigenbasis,

X1,2 =
1
�2�

0 �1 1 0

�1 0 0 �1

1 0 0 1

0 �1 1 0
� . �7�

They present a “network” of selection-ruled transitions:
��1�↔ ��2�↔ ��4�↔ ��3�↔ ��1� with transition energies 2B
and 2B�8J. For future reference, this network should be
compared with the case of a collective interaction operator,

Jz = �
j

X j =
1
�2�

0 0 2 0

0 0 0 0

2 0 0 2

0 0 2 0
� , �8�

in which �for two SQUIDs� the �1 matrix elements above
cancel, so the selection rules constrict to ��1�↔ ��3�↔ ��4�
�leaving ��2� as a protected subspace�, while the other matrix
elements double, amplifying the remaining transition rates.

The first and third of the three-SQUID chain’s interaction
operators, also in its energy eigenbasis, are

X1,3 =
1

�18�
0 �3 �3 �6 0 0 0 0

�3 0 0 0 0 ��6 ��3 0

�3 0 0 0 ��6 − �8 − 1 0

�6 0 0 0 ��3 − 1 �8 0

0 0 ��6 ��3 0 0 0 �3

0 ��6 − �8 − 1 0 0 0 �3

0 ��3 − 1 �8 0 0 0 �6

0 0 0 0 �3 �3 �6 0

� , �9�

A. J. SKINNER AND B.-L. HU PHYSICAL REVIEW B 78, 014302 �2008�

014302-4



which together with X2 �not shown� allow transitions
��1�↔ ��2,3,4�↔ ��5,6,7�↔ ��8�. When combined they give a
collective interaction operator

Jz =�
0 0 0 �3 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 − 1 0 0

�3 0 0 0 0 0 2 0

0 1 0 0 0 0 0 0

0 0 − 1 0 0 0 0 0

0 0 0 2 0 0 0 �3

0 0 0 0 0 0 �3 0

� , �10�

thereby amplifying some rates while breaking the network of
allowed transitions into four separate pieces: ��1�↔ ��4�,
��2�↔ ��5�, ��3�↔ ��6�, and ��7�↔ ��8�. In both the two- and
three-SQUID chains, the symmetries of the collective Jz op-
erators are the subspaces with a fixed number of clockwise
�↑ � vs counterclockwise �↓ � SQUID currents. These symme-
tries limit the allowed transitions between energy eigenstates.

III. FORMALISM

A. Born approximation

We now apply master-equation techniques from the model
of quantum Brownian motion32–34 to the chain of SQUIDs
interacting with their phonon bath. The unperturbed Hamil-
tonian H0�HS+HB defines a standard interaction picture in

which the coupling Ṽ�t�=eiH0t/�V�t�e−iH0t/� determines the
evolution of the system-bath density operator w̃�t�. To sec-
ond order in the coupling its instantaneous rate of change is

ẇ̃ = −
i

�
�Ṽ�t�,w̃�0�� −

1

�2�
0

t

dt�†Ṽ�t�,�Ṽ�t��,w̃�0��‡ .

�11�

Next, we assume the bath is in a thermal state �B
= �e−HB/kBT� /ZB initially uncorrelated with the chain: w̃�0�
=��0� � �B. Here T is the temperature and ZB=�ne−En/kBT is
the bath’s partition function. We average �trace� over the
states of the bath to obtain a preliminary equation of motion
for the system,

�̇̃ = −
�2

�2�
j,k
�

0

t

dt� TrB†X̃ j�t��̃ j�t�,�X̃k�t���̃k�t��,w̃�0��‡

�12�

�the first-order term vanished because TrB��̃ j�B�=0�.
For a given �j ,k� pair of SQUIDs, the trace of the nested

commutators results in four integrals. They differ only in the
permutation of terms; a representative one is

Ṽ jk�t�−iŨ jk�t�

X̃ j�t��
0

t

dt�X̃k�t��TrB��̃ j�t��̃k�t���B�

�jk���−i�jk���

��0� ,

�13�

where the overbraces and underbraces highlight the time av-

eraging of the interaction operator X̃k�t�� into what we call

the noise Ṽ jk�t� and susceptibility Ũ jk�t� operators, weighted
by the kernels � jk��� and � jk��� that, with �� t− t�, are the
real and imaginary parts of the bath correlator
TrB��̃ j�t��̃k�t���B�. �In the context of quantum Brownian os-
cillator systems, the susceptibility kernel used here is called
dissipation � �Ref. 33� there.�

The four integrals for each SQUID-pair, originating from
the nested commutators and each contributing a noise and a
susceptibility, can be collected to obtain a “Born” �but not
yet Born-Markov� master equation �still in the interaction
picture and still only valid to second order�,

�̇̃ = −
�2

�2 �
j,k=1

N

��X̃ j,�Ṽ jk, �̃�� − i�X̃ j,�Ũ jk, �̃	�� , �14�

where we have used Born’s approximation that replaces ��0�
with �̃�t����0�.

Born’s approximation updates the integrated solution for
�̃�t�; in a small time step dt the instantaneous change d�̃
depends not on the initial ��0� but on the updated instanta-
neous �̃�t�. We will see that this update is needed for the
long-time equilibration to thermal equilibrium. The Born
master equation, although technically still only valid to sec-
ond order, is a plausible guess at the longer-time open system
dynamics which, like any other theory, can only be supported
by real data or exactly solvable open systems, such as the
quantum Brownian oscillator, and may not be valid in every
case.

B. Markov approximation

Next, we time average the interaction operators X̃k�t��
into the noise Ṽ jk�t� and susceptibility Ũ jk�t� operators by
making a Fourier expansion of the interaction operators us-

ing amplitudes X̃k
��t� and P̃k

��t�,

X̃k�t − �� = �
��0

�X̃k
��t�cos���� − P̃k

��t�sin����� . �15�

�In the eigenbasis of HS, the nonzero matrix elements of X̃k
�

are just those matrix elements of X̃k with energy difference
���; multiplying those same matrix elements by �i gives

P̃k
�. This sign convention is consistent with the matrix ele-

ments of a harmonic oscillator’s position, �n�a†+a�n+1�
=�n+1, and momentum, i�n�a†−a�n+1�=−i�n+1. X̃k

0 not

only consists primarily of the diagonal matrix elements of X̃k
but also includes matrix elements between degenerate
states.�

We thereby obtain basis-independent expressions for the
noise,

Ṽ jk�t� = �
��0

�Djk
� �t�X̃k

��t� − Ajk
� �t�P̃k

��t�� , �16�

and susceptibility,
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Ũ jk�t� = �
��0

�rjk
� �t�X̃k

��t� − � jk
� �t�P̃k

��t�� , �17�

where the coefficients �to be discussed shortly� of diffusion
D, anomalous diffusion A, renormalization r, and damping �
serve to Fourier sample �at least for t→�� the real �� jk� and
imaginary �� jk� parts of the bath correlator,

Djk
� �t� = �

0

t

d�� jk���cos ��, Ajk
� �t� = �

0

t

d�� jk���sin �� ,

rjk
� �t� = �

0

t

d�� jk���cos ��, � jk
� �t� = �

0

t

d�� jk���sin �� .

�18�

Finally, we make the Markov approximation, that uses
constant coefficients obtained in the limit t→� in place of
the time-dependent ones, and substitute these noise and sus-
ceptibility operators into Eq. �14� to obtain our Born-Markov
master equation,

�̇̃ =
�2

�2 �
j,k=1

N

�
��0

�irjk
� �X̃ j,�X̃k

�, �̃	� − i� jk
� �X̃ j,�P̃k

�, �̃	��

− Djk
�
†X̃ j,�X̃k

�, �̃�‡ + Ajk
�
†X̃ j,�P̃k

�, �̃�‡ . �19�

This is essentially a Fourier-series version of the Born master
equation using Markov �constant� coefficients. It is reassur-
ing that in the limit of only one contact point �no sum over
j ,k� and only one energy splitting �no sum over ��, it be-
comes

�̇̃ � ir�x̃,�x̃, �̃	� − i��x̃,�p̃, �̃	� − D�x̃,�x̃, �̃�� + A�x̃,�p̃, �̃�� ,

�20�

which is the well-known34,33 Born-Markov equation for the
quantum Brownian motion of an oscillator system �HS
=��a†a� with a bilinear coupling �V�x�� to an oscillator
bath.

C. Spectral densities

In Appendixes C–E we study the bath correlator and ob-
tain the coefficients of diffusion,

Djk
� �




2
Jjk���coth� ��

2kBT
� = lim

x→�
Djk

� �t� , �21�

and damping,

� jk
� �




2
Jjk��� = lim

x→�
� jk

� �t� , �22�

written in terms of spectral densities Jjk��� with, e.g.,

Jjj��� =
�me

2I2R4�5

6�2e2�c�
5 pFq��3

2
�,�5

2
,3�,− ���R�2� �23�

as the individual spectral density for a single �j=k� SQUID.
Here pFq is the generalized hypergeometric function and �R
�R /c� is half the time it takes a phonon to traverse the
SQUID.

We then find the same spectral density to first order in
small k� ·r� jk=�� jk�1 for a distinct �j�k� pair of SQUIDs
separated by r� jk, where k� is a bath wave vector at the chain
transition frequency � and � jk=rjk /c� is the phonon transit
time between the SQUIDs. Remarkably, even “large” and
“far-apart” SQUIDs can have �� jk�1 at a level crossing
where ��0. In these cases, as for close-together small
SQUIDs, we thus use

Jjk��� = Jjj��� when �� jk � 1. �24�

On the other hand, the cross term spectral densities vanish
for truly far-apart SQUIDs, satisfying k� ·r� jk=�� jk�1,

Jjk��� = 0 when �� jk � 1. �25�

We avoid the intermediate regime by tuning the chain Hamil-
tonian close to or far from any critical-point energy-level
crossings.

D. Independent vs collective couplings

In our chosen cases, the cross term spectral densities ei-
ther vanish or are identical to the single-SQUID spectral den-
sities. Our Born-Markov master equation �Eq. �19�� thus
splits into two parts, one for which there are no cross terms
�independent coupling� and one for which the cross terms are
equally weighted �collective coupling�. Take for example the
effect of the damping and diffusion on �̇̃. High-energy tran-
sitions ��1 /� jk couple independently �no cross terms�,

−
�2

�2�
��

�
j

ˆD�
†X̃ j,�X̃ j

�, �̃�‡ + i���X̃ j,�P̃ j
�, �̃	�‰ . �26�

�Now we are using D��Djj
� and ���� j j

� independent of j.�
Meanwhile, lower-energy transitions ��1 /� jk couple col-
lectively �with equally weighted cross terms�,

−
�2

�2�
��

ˆD�
†J̃z,�J̃z

�, �̃�‡ + i���J̃z,�K̃z
�, �̃	�‰ , �27�

in which J̃z
��� jX̃ j

� and K̃z
��� jP̃ j

� are collective versions of

our interaction operators’ Fourier amplitudes X̃k
� and P̃ j

�.
In the case of sufficiently small SQUIDs only the collec-

tive coupling applies. If furthermore there is only one tran-
sition frequency �, such as in the Dicke model39 of many
two-level atoms in a photon bath, the effect of collective
damping and diffusion simplifies to

−
�2

�2ˆD
�
†J̃z,�J̃z, �̃�‡ + i���J̃z,�K̃z, �̃	�‰ . �28�

With interqubit couplings the spectrum is more complicated,
requiring the aforementioned sum over � using, for larger
and thus farther apart SQUIDs, collective couplings for low
frequencies and independent couplings for high frequencies.
�A scenario involving intermediate frequencies would be
even more complicated.�
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IV. FOUR GENERATORS

A. Renormalization and anomalous diffusion

The master equation has four generators, one for each of
the coefficients. It can be shown70 that for a weak coupling
of our Heisenberg SQUID chain to the bath and with J and B
set close to or far from any resonant pairs of allowed transi-
tions, the renormalization and anomalous diffusion contrib-
ute effectively Hamiltonian dynamics, which can be dropped
from the master equation by “renormalizing” the chain
Hamiltonian. We would like to concentrate on the damping
and diffusion. To make concrete sense of these two genera-
tors, our examples use the familiar and useful energies and
eigenstates of the Heisenberg SQUID chain. In other words,
we assume that the renormalized Hamiltonian is given by
Eq. �1� as though the “bare” SQUIDs were engineered with a
slightly different original Hamiltonian, including a “counter-
term” that cancels the renormalization and anomalous diffu-
sion caused by their crystal environment. This engineering
may actually be quite difficult, relying perhaps on many tri-
als and errors. In any case, our general discussion of the
damping and diffusion is in terms of the renormalized ener-
gies and the matrix elements in the renormalized eigenbasis.

B. Damping and diffusion

We now show that the damping and diffusion work to-
gether to effectively decohere and thermalize the system
within each network of allowed transitions. In Eq. �19� we
set rjk

� =0=Ajk
� in accordance with the aforementioned renor-

malization and obtain

�̇̃ = −
�2

�2 �
j,k,�

�Djk
� �X̃ j,�X̃k

�, �̃�� + i� jk
� �X̃ j,�P̃ jk

� , �̃	�� . �29�

We expand out the commutators, work in the energy eigen-
basis �where ����=E�−E� is the energy lost in the transi-
tion, at frequency ���, from ��� to ���� by inserting resolu-
tions of the identity, e.g., I=��������, and define the rates

� jk
�� �

�2

�2

�

2
Jjk������1 + coth�����

2kBT
��

�jk
���+Djk

��� �30�

to obtain a matrix element equation in terms of the popula-
tions �̃�������̃��� and coherences �̃�������̃��� for their
rates of change,

�̇̃�� = − �
j,k
��

��̄

X̃ j��X̃k��̄� jk
��̄�̃�̄� − �

��

X̃ j��X̃k��� jk
���̃��

− �
��

X̃k��X̃ j��� jk
���̃�� + �

�̄�

X̃k�̄�X̃ j��� jk
��̄�̃��̄,� �31�

where we have used the evenness of Djk
� and oddness of � jk

�

with respect to � to combine the two generators into this one
expression.

Many terms in this sum are suppressed by selection-ruled
resonance conditions. In the second term, for example, most

of the X̃ j��X̃k���e−i����+����t oscillate so quickly, compared
to the weak coupling between the chain and the bath, that
they average to zero unless there is a near resonance ���

����. The second term is thus effectively a sum over nearly
resonant pairs of allowed transitions from states ��� and ���
into ��� and ���, respectively. So is the third term.

Meanwhile, the first and fourth terms are effectively sums
over allowed transitions from states ��̄� near E� ����̄

����� and states ��̄� near E� ����̄����� into those states
��� that are accessible by transitions from ��� and ���, respec-
tively. In the first and fourth terms, the remaining transitions
from states near E� ����̄����� and E� ����̄����� tend to
decrease �̃�� in proportion to �̃�� �decoherence� as well as in
proportion to nearby �in energy� matrix elements �̃�̄� �in the
same column� and �̃��̄ �in the same row�. In the second and
third terms, the remaining nearly resonant pairs of transitions
from ��� and ��� into ��� and ��� ��������� tend to increase
�̃�� in proportion to those matrix elements �̃�� within, and/or
nearly within, the diagonal that includes �̃�� �when the den-
sity matrix is figuratively stretched to be linearly spaced with
increasing energy�. When �=� this diagonal is the central
diagonal, sometimes called the diagonal, and population ex-
change �relaxation� results. When ��� there is the possibil-
ity for coherence exchange �coherence flow�.

V. NUMERICAL SIMULATIONS

We simulate the effects of the matrix element equation in
a variety of scenarios for two- and three-SQUID chains. In
all cases we choose J and B to set the chain close to or far
from resonant pairs of transitions �we can run at the critical
point because of its exactly resonant pairs�. That way we can
and do discard the oscillating coefficients from the equation
since their effect would average to zero anyway. �This also
protects the collective and critical effects on the networks of
selection-ruled transitions from first-order variations in the
individual SQUID frequencies along the chain.� The matrix
element equation becomes a coupled first-order differential
equation with constant coefficients which we numerically
integrate.71

We consider large SQUIDs, R=10 �m with I=3 �A,
and small SQUIDs, R=10 nm with I=0.1 �A. In both cases
we imagine them to be spaced 4R apart in a solid crystal with
mass density �=5 g /cm3 and sound velocity of 5 km/s. We
set the Heisenberg splitting at 1.0 GHz=8J /h for a two-
SQUID chain and 1.0 GHz=6J /h for a three-SQUID chain.
We then choose SQUIDs with frequencies 2B /h=0.5, 1.0, or
1.5 GHz �below, at, or above the chain’s critical point�. We
set the temperature to be 1/5 of the SQUID frequencies, i.e.,
kBT /h=0.1, 0.2, or 0.3 GHz.

Although larger SQUIDs are possible, these parameters
keep the photon-induced decoherence rates,28 in the absence
of shielding, well below our phonon-induced rates. However,
still these SQUIDs’ 4R separation is large enough to discard
the j�k cross terms. At the critical point there are certain
transition frequencies �=0�1 /� jk whose cross term rates
� jk

�=0 are identical to the j=k rates, giving a partially collec-
tive coupling to the bath. On the other hand, the small
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SQUIDs’ 4R separation is small enough to achieve a collec-
tive coupling to the bath for all �. In either case the matrix
elements of the interaction operators are used to calculate all
the constant coefficients in the matrix element equation and
we then proceed with the numerical simulations for any ini-
tial state ��0�.

VI. DISCUSSION

A. Decoherence and relaxation

Our matrix element equation �Eq. �31�� is a set of coupled
first-order differential equations. Two general features are
decoherence and relaxation. Decoherence is caused by tran-
sitions from ��� and ���,

� �̇̃��

� �̃��

= − �
j,k ��

�

X̃ j��X̃k��� jk
�� − X̃ j��X̃k��� jk

��

0

− X̃k��X̃ j��� jk
��

0

+ �
�

X̃k��X̃ j��� jk
�� � − �̄���

�32�

�here the second and third terms vanished because of our
specific selection rules� and is exacerbated by transitions
from nearby states. Setting �=� we see the relaxation dy-
namics; in that the population �̃�� is flowing to and from the
�̃�� at the selection-ruled transition rates
2� jkX j��Xk��� jk

���̃�� and 2� jkX j��Xk��� jk
���̃��. A stationary

�and thermal� balance is eventually reached at �̃�� / �̃��

=� jk
�� /� jk

��=e−����/kBT �at which point the populations’ effect
on the off-diagonal coherences �̇̃��,

− �
j,k,�

X̃ j��X̃k���� jk
���̃��

�̄=�

− � jk
���̃��

�=�

− � jk
���̃��

�=�

+ � jk
���̃��

�̄=�

� ,

�33�

also vanishes�. The decay of the coherences allows the relax-
ation to proceed to a thermal equilibrium �T�e−HS/kBT /ZS
�Figs. 1–4�, provided the network of selection-ruled transi-
tions does not isolate any subspace�s�. For isolated networks
each subspace will obtain its own stationary thermal balance

of populations �Figs. 5–8� constrained by the total available
initial probability to be in that subspace.

Remarkably, the decay of �̃�� is offset, as it is on the
central diagonal, by the nearly resonant pairs of transitions
into ��� and ��� from any matrix elements �̃�� within, and/or
nearly within, the off-center diagonal that includes �̃��. In-
deed, a populationlike coherence flow is established �Figs. 2
and 7� between �̃�� and �̃�� that is primarily into the lower-
energy subspace when the temperature is low; quantum os-
cillations which are decaying in one subspace can in prin-
ciple emerge in a lower-energy subspace.

B. Collective effects

Collective coupling operators sometimes have more sym-
metry than independent interaction operators. This is because
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t �Μs�

0.2

0.4

0.6
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1
�a� Populations

�
� � �Ψ4 � � �11�

�Ψ1 � � �00�

�01���10�

20 40 60 80 100 120
t �Μs�

0.2

0.4

0.6

0.8

1
�b� Entanglement and Coherence

eof

�

� � �Ρ
 14 �

mix B�Bc

FIG. 3. Decoherence and relaxation in two large SQUIDs dissi-
pating independently. �00�+ �11� cooling above the critical point. �a�
The population dynamics are the same for an equal mixture of
��1���11� and ��4���00�; only the superposition is entangled. �b�
The entanglement does not oscillate because any phase between
�00� and �11� may be generated locally. It decays faster than the

coherence �̃14�e−�̄14t upon which it depends. Later, the populations
mix back in some entanglement �8J /h=1.0 GHz, 2B /h=1.5 GHz,
kBT /h=0.3 GHz, R=10 �m, and I=3 �A�.
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�Ρ
 23 �
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FIG. 4. Entanglement oscillations in two large SQUIDs dissipat-
ing independently. �01� cooling below the critical point. �a� The
population dynamics are the same for an equal mixture of ��2�
��01�− �10� and ��3���01�+ �10�. �b� From their initial superposi-
tion �01�, the evolving phase between ��2� and ��3� drives �6
�105 rapid oscillations of the entanglement of formation �eof�; we
have plotted a moving average �eof�, the upper bound �	eof�, and
the lower bound ��eof�, which is the same as the entanglement of
the mixture. Initially, the moving average decays with the coherence

�̃23�e−�̄23t but later pulls away to equilibrate �8J /h=1.0 GHz,
2B /h=0.5 GHz, kBT /h=0.1 GHz, R=10 �m, and I=3 �A�.
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FIG. 5. Dicke super-radiance and Subradiance and superdeco-
herence and subdecoherence in two small SQUIDs dissipating col-
lectively. ��1�+ ��2�+ ��3�+ ��4� cooling above the critical point. �a�
��4� flows into ��3� which flows into ��1�. The singlet ��2�= �01�
− �10� is a protected subspace and cannot relax into ��1�; the popu-
lations do not approach their thermal levels �gray lines�. However,
the collective relaxation rate from ��3� to ��1� is double the inde-
pendent rate. �b� The coherence �̃12, between ��1� and ��2�, barely
decays; the only mechanism for that is the ��1�→ ��3� transition
which is suppressed by the cold bath. Note also how �̃34 flows, in a
pair of resonant transitions, into �̃13 whose collective decoherence
rate is double its independent dissipation rate �8J /h=1.0 GHz,
2B /h=1.5 GHz, kBT /h=0.3 GHz, R=10 nm, and I=0.1 �A�.
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they are sums of the independent operators, so dissimilar
features are effectively averaged away. In our cases, the sym-
metries of the collective operator Jz are the subspaces with a
fixed number of clockwise �↑ � vs counterclockwise �↓ �
SQUID currents.

If the symmetry is shared with the system Hamiltonian,
there are invariant subspaces which are not perturbed by the
system-bath coupling, giving decoherence- and relaxation-
free subspaces.11,38,72 In the two-SQUID chain, for example,
the ��2�= �01�− �10� singlet is an eigenstate of both Jz and Hs,
and thus for two small SQUIDs ��2� is a protected subspace.
It is subradiant and any superposition involving ��2� is sub-
decoherent, decohering only to the extent that the other states
superposed with ��2� are decaying �Fig. 5�.

Even when the collective symmetry is not shared by the
system Hamiltonian, the symmetry can remove certain tran-
sitions from the network of selection rules, as happens in our
small three-SQUID chain �Fig. 7�. An energy eigenstate such
as ��2�= �001�– �100�= �↓↓↑�− �↑↓↓�+ �↓↑↑�− �↑↑↓�, while
having an indefinite number N↑−N↓, still lays and stays
within a restricted range of SQUID current combinations,
i.e., not including any all-clockwise or all-countrclockwise
currents such as would be found in ��1�, and thus the
��1�↔ ��2� transition is blocked even though Jz and Hs do
not commute or even share a single eigenvector. Although
there is no decoherence-free subspace, the complete network
��1�↔ ��2,3,4�↔ ��5,6,7�↔ ��8� is broken into four separate
pieces: ��1�↔ ��4�, ��2�↔ ��5�, ��3�↔ ��6�, and ��7�↔ ��8�.

Collective decoherence and relaxation rates can also scale
with the number of subsystems N since again the collective
operator is a sum of the independent operators and their
similarities will scale with N as they are added. One way to

see this is in the way the independent operators’ noncancel-
ing transition matrix elements add together. Another is that
when we include all cross terms equally, the master equation
� j,k has N times as many terms for N SQUIDs, as in the case
of independent dissipation � j. Physically, with N SQUIDs
there are N times as many ways to drive a transition if each
SQUID’s coupling to the bath drives the same transition in
the same way. In our two-SQUID chain, the ��1�↔ ��3� tran-
sition matrix elements are identical and that transition rate is
doubled in the collective coupling of small SQUIDs, ampli-
fying both the relaxation �super-radiance� and decoherence
�superdecoherence� of states involving ��3� �Fig. 5�. This is
the cause of Dicke super-radiance39 in the case of no inter-
qubit couplings and only one transition frequency, as has also
been studied for uncoupled nanomagnets coupling to
phonons.40

C. Critical point effects

The relaxation and decoherence will thermalize the
SQUIDs when the network of selection rules is complete.
For example, for two large SQUIDs dissipating indepen-
dently, the matrix elements of the interaction operators show
that the network of selection rules is ��1�↔ ��2,3�↔ ��4�.
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FIG. 7. Automatic quantum error correction �Ref. 69� in three
small SQUIDs dissipating collectively. ��5�+ ��6� cooling to ��2�
+ ��3�. �a� The collective interaction operator Jz=X1+X2+X3

breaks the network of allowed transitions into four isolated pieces:
��1�↔ ��4�, ��2�↔ ��5�, ��3�↔ ��6�, and ��7�↔ ��8�. �b� The �̃56

coherence flows along with the populations into �̃23 because �25

=�36. Then �̃23 never decays; transitions back into ��5� and ��6� are
suppressed by the cold bath and are resonant �and therefore coher-
ent� anyway �6J /h=1.0 GHz, 2B /h=1.5 GHz, kBT /h=0.3 GHz,
R=10 nms, and I=0.1 �A�.
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FIG. 8. Critical behavior of three large SQUIDs dissipating in-
dependently. �↑↑↓� cooling at the critical point. The distant SQUIDs
are closely spaced compared to the bath wavelengths corresponding
to the frequencies �12=�13=�23=0 and �45=�46=�56=0. �a� The
��1�↔ ��2,3� transitions are cut out of the network while upward
transitions are suppressed by the cold bath; therefore ��2� and ��3�
have long-lived populations. �b� �̃23 is long lived because the tran-
sitions out of its ��2� and ��3� supports are so rare �6J /h
=1.0 GHz, 2B /h=1.0 GHz, kBT /h=0.1 GHz, R=10 �m, and I
=3 �A�.
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FIG. 6. Critical behavior of two large SQUIDs. ��1�+ ��2�
+ ��3�+ ��4� cooling at the critical point. The distant �e.g., 40 �m�
SQUIDs are closely spaced compared to the bath wavelengths cor-
responding to the frequency �12=0; the ��1�↔ ��2� transitions are
blocked, akin to the collective behavior of two small SQUIDs close
together. �a� ��4� flows into ��3� and ��2�= �01�– �10�, whereas ��3�
flows only into ��1�, giving it an excess population over ��2� which
the chain cannot quickly resolve; the ��2�→ ��4�→ ��3�→ ��1� path-
way takes an extraordinarily long time �not shown�. �b� The coher-
ence �̃12 barely decays; transitions ��2�↔ ��1� are blocked while
transitions from ��1� and ��2� are suppressed by the cold bath. Some
of the decaying �̃34 is absorbed by �̃13 �8J /h=1.0 GHz, 2B /h
=1.0 GHz, kBT /h=0.2 GHz, R=10 �m, and I=3 �A�.
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There is a reasonable pathway from any eigenstate to any
other and these examples lead to thermalization. However, in
the case of small SQUIDs close together there is a collective

coupling Jz and the network �for two SQUIDs� becomes
��1�↔ ��3�↔ ��4� while ��2� is a protected subspace. We at-
tempt to summarize with a schematic

4 4 4

z { z z {

3 ind 2 3 col 2 3 cri 2

{ z { {

1 1 1

,

in which the first and second networks are those of indepen-
dent and collective dissipation. The third network is at the
critical point �12=0 for which the network is
��1�↔ ��3�↔ ��4�↔ ��2�. Being at the critical point severs
the ��1�↔ ��2� link, as was done in the collective case, for
�12� jk=0�1, but not the ��2�↔ ��4� link �for large SQUIDs�
for which �14� jk�1. The only allowed transitions out of ��1�
and ��2� are suppressed by the cold bath which is loath to
supply the necessary energy. This helps us to protect the
population of ��2� and the coherence �̃12 �Fig. 6�. For three
large SQUIDs at the critical point, the ��1�↔ ��2,3� and
��4�↔ ��5,6� transitions are severed so that, while the net-
work is less disconnected than in the collective case, the
��2,3� populations and �̃23 coherence are extended �Fig. 8�.

VII. CONCLUSION

A chain of a few coupled SQUIDs exchanging their an-
gular momenta with a phonon bath can be studied in the
Born-Markov approximation with master-equation tech-
niques from the quantum Brownian motion model. The
damping and diffusion give a matrix element equation show-
ing decoherence, relaxation, and the possibility for decaying
quantum oscillations to emerge in a lower-energy subspace.
The relaxation adjusts the populations of the eigenstates and
undermines their support for any superposition �coherence�
between them, leading to decoherence.

The cascade of populations can occupy entangled states of
intermediate energy, resulting in a surge of the entanglement
of formation that indicates the number of singlets needed to
form, from local operations and classical communication, an
ensemble of SQUID pairs ��t�.13 The entanglement is in-
duced even though the SQUIDs are dissipating indepen-
dently.

The level spacings in the Heisenberg SQUID chain in-
clude pairs of resonant transitions which are necessary for
coherent oscillations to decay into a lower-energy subspace
where they can decohere more slowly. In this phenomenon, a
superposition of two eigenstates relaxes coherently into a
superposition of two lower-energy eigenstates with the same
energy difference as the upper two.

Small SQUIDs close together exhibit a collective cou-
pling to the bath which can give a protected subspace and

enhanced or suppressed transition and decoherence rates. In
effect, the network of selection-ruled transitions is broken
into isolated pieces. When the level spacings cooperate to
allow coherence flow in these sufficiently isolated pieces,
decaying quantum information can reappear and be sustained
in a lower-energy subspace; this is the idea behind “auto-
matic quantum error correction.”69

Another feature of the Heisenberg SQUID chain is the
critical-point level crossings where an allowed transition
vanishes along with its frequency. The network of selection
rules in effect acquires some features of the collective behav-
ior as �� jk→0�1; even large SQUIDs spaced well apart,
when tuned to the critical point, can have extended coher-
ence times. More generally, this suggests some qubit encod-
ing schemes might be augmented with interqubit couplings
to obtain some or all of the benefits of a collective coupling
to the bath.
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APPENDIX A: COHERENCES AND POPULATIONS

The instantaneous state of a spin chain can be described
by a density operator ��t�=�npn��n���n� which averages
“outer products” of pure states ��n���n�, weighted by their
probabilities pn into a statistical mixture. In the energy eigen-
basis, a diagonal element ������� is the probability of obtain-
ing the eigenstate ���, sometimes called the population of
���. An off-diagonal element ������� results from including
superpositions of eigenstates, e.g., ��1�=c����+c����; it has
an evolving phase, �����t����=ei�E�−E��t/������0����, which
indicates the chain’s coherent dynamics. For this reason,
these off-diagonal terms are called coherences.

APPENDIX B: THE CHAIN-BATH COUPLING

The first SQUID has a current I
1
z confined to its ring of

cross-sectional area b: j�1= �I /b�
1
z�̂ within the ring j�1=0
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elsewhere. Here �̂ is the azimuthal unit vector in cylindrical
coordinates centered on the ring. With

V1 = �me/e�� d3rj�1 · u�̇

and

�� k� � �
0

2


d��
R−�b/2

R+�b/2
drr�

−�b/2

�b/2
dz�̂e−ik�·r�,

as the Fourier transform of the �̂ within the ring, we have

V1 =
me

e

I

b

1

z − i
�V

�
k�s

���s�k��
2�

�ak�s�� k�
� − ak�s

†
�� k�� · ês�k�� .

In the thin ring approximation, �k���b�1, the Fourier
transform becomes

�� k� ⇒ − i2
RbJ1�kxR�n̂k� ,

where J1�kxR�=J1��k��R sin �� is the first-order Bessel func-
tion. The polar angle � is the angle between the ẑ axis of the
ring and the wave vector k� while n̂k� �k� lies in the plane of

the ring. Choosing ê1�k�� to lie in the plane of the ring, i.e.,
ê1�k��= n̂k�, we obtain

V1 = �
1
z�

k�

��k��RJ1�kxR��ak�1 + ak�1
† � ,

with coupling constant ��2
I�me /e��R�c� /2�V.
The other SQUID rings are centered not at r�=0 but are

evenly spaced, a distance d apart, along the x̂ axis. The
analysis for each SQUID’s coupling to phonons is calculated
in its own coordinates r� j centered at x� j �d�j−1�x̂ so that r�
=x� j +r� j. The creation and annihilation operators’ phase fac-
tors e�ik�·r� become e�ik�·x� je�ik�·r�j while the rest of the calcula-
tions, in the r� j coordinates, are exactly the same as before.
The total coupling is thus

V = ��
j


 j
z�

k�

��k��RJ1�kxR��ak�1eik�·x� j + ak�1
† e−ik�·x� j� .

APPENDIX C: THE BATH CORRELATOR

To evaluate the bath correlator we perform the trace in the
bath’s energy eigenbasis by summing over the diagonal ma-
trix elements,

TrB��̃ j�t��̃k�t���B� = �
n

�
k�,k��

��k��R�k���RJ1�kxR�J1�kx�R��n��ãk�1�t�eik�·x� j + ãk�1
† �t�e−ik�·x� j��ãk��1�t��eik��·x�k + ãk��1

† �t��e−ik��·x�k�
e−En/kBT

ZB
�n	

= �V/8�3�

0

� d��2

c�
3 


0

�

d� sin �

0

2�

d�

�k�

��RJ1
2���R sin ��

�k��RJ1
2�kxR�

��coth� 	�

2kBT

cos���� − i sin�����

�N�+1�e−i��+N�ei��

cos��� jk sin � cos ��

R�e
ik�·�x� j−x�k��

.

The steps leading to the second line are as follows. The
double sum �k�k� collapses to a single sum �k� �which we
convert to a k�-space integral in spherical coordinates� be-
cause the only nonzero cross terms ��k�k��. They are

�n�ãk�1eik�·x� jãk��1
† e−ik��·x�k�n� = �nk�1 + 1��k�k��e

−i��eik�·x� jk

and

�n�ãk�1
† e−ik�·x� jãk��1eik��·x�k�n� = nk�1�k�k��e

i��e−ik�·x� jk,

where the factors e�i�� arise from being in the interaction
picture. Here we have abbreviated �1�k��=� for the angular
frequency of the mode with wave vector k� and transverse-in-
plane polarization and defined as x� jk=x� j −x�k for the vector
connecting the �j ,k� pair of SQUIDs. We have also used

�R�R /c�, which is half the time it takes a phonon to
traverse a SQUID. We switch the order of the sums,
�n�k� ⇒�k��n, and write N���nnk�1

e−En/kBT

ZB
for the thermal-

average occupation number. It sums to N�=1 / �e��/kBT−1�,

N� =
�nk�1

nk�1e−��nk�1/kBT

�nk�1
e−��nk�1/kBT

1/�e��/kBT−1�

�i�k�1 �ni
e−��ini/kBT

�i�k�1 �ni
e−��ini/kBT

1

.

Now every function in the bath correlator besides the e�ik�·x� jk

is an even function of k�. The sum over wave vectors thus
selects the cos�k� ·x� jk� part of e�ik�·x� jk. Because the �j ,k� pair
of SQUIDs are positioned on the x̂ axis, we use kx
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= �k��sin � cos � to obtain cos�k� ·x� jk�=cos��� jk sin � cos ��,
with � jk=d�j−k� /c� the phonon transit time between the
SQUIDs. Finally, it can be shown that �2N�+1�
=coth��� /2kBT� so that we can write

�N� + 1�e−i�� + N�ei�� = coth� ��

2kBT
�cos���� − i sin���� .

APPENDIX D: THE SPECTRAL DENSITIES

We can write the bath correlator as an integral over bath
frequencies,

0 B
TrB��̃ j�t��̃k�t���B� = ��

d�Jjk���coth� ��

2k T
�cos����

�jk���

− i�
0

�

d�Jjk���sin����

�jk���

,

characterized by spectral densities,

Jjk��� =
V

8
3

�R

c�
3 �3� jk���R� ,

for which we need the angular integration,

� jk���R� � �
0

�

d� sin �J1
2���R sin �� 2�J0��� jk sin ��

�d� cos���jk sin � cos ��

.

For the single-SQUID �j=k� � integration, we obtain

Jjj��� =
�me

2I2R4�5

6�2e2�c�
5 pFq��3

2
�,�5

2
,3�,− ���R�2� ,

independent of j and with pFq the generalized hypergeomet-
ric function. Although we use these exact “pFq” spectral den-
sities in our numerical simulations, it is helpful to know that
for a “small ring” ���R�1� the single small-SQUID spectral
density is approximately

Jjj
�S���� ⇒

2�me
2

3�2
2e2

I2�
R2�2

4�c�
5 �5,

while for a “large ring” ���R�1� the single large SQUID
spectral density is approximately

Jjj
�L���� ⇒

2�me
2

�2e2

I2R

4�c�
2 �2.

Next, for �� jk�1, as can happen for “large” SQUIDs at a
level crossing where ��0 or, regardless of �, for a few
small SQUIDs spaced only a few small-SQUID radii apart,
the cross term spectral densities must be considered. It turns
out that to first order in �� jk we can use the single SQUID
j=k rates for the j�k cross terms as follows. �� jk�1 im-
plies ��R�1 so we reconsider our � integrations with
J1���R sin ��� 1

2��R sin � to obtain

� jk���R�
�2�R

2 /4
⇒ 4�

�� jk cos��� jk� − �1 − �2� jk
2 �sin��� jk�

�3� jk
3

2��d� sin3 �J0���jk sin ��

,

which, to first order in �� jk, give spectral densities identical
to those of a single small SQUID,

Jj�k
�S� ⇒ Jjj

�S���� when �� jk � 1,

and we may as well use the equivalent pFq spectral densities.
Finally, we assume that when �� jk�1 we can neglect the

cross term �j�k� spectral densities. The assumption relies on
the J0��� jk sin �� kernel of the � integration oscillating
quickly enough between positive and negative values that the
integral never accumulates any significant value. Again, the

pFq spectral densities are the ones we use for j=k and for
close together or far apart SQUIDs satisfying �� jk�1. For
far apart SQUIDs satisfying �� jk�1, we use Jj�k���=0.

APPENDIX E: CONSTANT (MARKOV)
COEFFICIENTS

The coefficients of diffusion, renormalization, anomalous
diffusion, and damping are obtained by convolving a cos ��
or sin �� with the � jk��� or � jk��� kernels. However, the only
time-dependent terms in the integrands for the kernels are
cos ��� or sin ��. Since these time convolutions are rela-
tively simple in our calculation of the coefficients we switch
the order of the integrals, 
d�
d��⇒
d��
d�. For the dif-
fusion and damping, we find that the integrations

0

t d� cos ��� cos �� or 
0
t d� sin ��� sin �� are

1

2
� sin��� − ��t

�� − �
�

sin��� + ��t
�� + �

� ,

which behave, as t→�, similarly to Dirac delta functions:


2 �����−�������+���. This is because they oscillate with
�� at a frequency t everywhere except at ��, where they
spike to a height �t and width �1 / t. As long as the fre-
quency of these oscillations is much faster than any features
of the spectral densities �i.e., t�� jk ,�R�, of the cutoff �i.e.,
t�1 /��, and of the hyperbolic cotangent �i.e., t�� /kBT�,
then the only contribution to the �� integral comes from the
spikes at ��. Subject to these rough criteria,

t � � jk,�R t � 1/� t � �/kBT ,

the coefficients of diffusion and damping approach constant
values which, thanks to the Dirac delta functions, are easy to
identify,

Djk
� �




2
Jjk���coth� ��

2kBT
� = lim

x→�
Djk

� �t�

and

� jk
� �




2
Jjk��� = lim

x→�
� jk

� �t� .
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For the renormalization and anomalous diffusion, the in-
tegrations 
0

t d� sin ��� cos �� or 
0
t d� cos ��� sin �� are

sin2�� + �

2
t

�� + �
�

sin2�� − �

2
t

�� − �
,

whose behavior for t→� is not so clear. However, for large
t these terms oscillate so fast with �� that they too average
away the time dependence and we can at least define, using
an explicit exponential cutoff e−��/�, constant values for the
renormalization,

rjk
� � lim

x→�
�

0

�

d��Jjk����e−��/�� sin2�� + �

2
t

�� + �
+

sin2�� − �

2
t

�� − �
� ,

and anomalous diffusion,

Ajk
� � �

0

�

d��Jjk����coth� ���

2kBT
�e−��/�

��
0

t→�

d� cos ��� sin �� ,

which we use symbolically without actually ever evaluating
them.
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